Global Wellposedness for a Modified Critical Dissipative Quasi-Geostropic Equation

نویسنده

  • Changxing Miao
چکیده

In this paper we study the following modified quasi-geostrophic equation ∂tθ + u · ∇θ + ν|D| θ = 0, u = |D|Rθ with ν > 0 and 0 < α < 1. This equation was firstly introduced by Constantin-Iyer-Wu in [10]. Here, we first prove the local existence result of smooth solutions by using the energy method and the regularization effect of the transport equation with fractional diffusion, and then through constructing a suitable modulus of continuity we rule out all the possible blowup scenarios to obtain the global well-posedness of this system. Mathematics Subject Classification (2000): 76U05, 76B03, 35Q35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Wellposedness for a Modified Critical Dissipative Quasi-Geostrophic Equation

In this paper we study the following modified quasi-geostrophic equation ∂tθ + u · ∇θ + ν|D| θ = 0, u = |D|Rθ with ν > 0 and 0 < α < 1. This equation was firstly introduced by Constantin-Iyer-Wu in [10]. Here, we firstly prove the local existence result of smooth solutions by using the classical method, and then through constructing a suitable modulus of continuity we rule out all the possible ...

متن کامل

A new Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation

We show a new Bernstein’s inequality which generalizes the results of CannonePlanchon, Danchin and Lemarié-Rieusset. As an application of this inequality, we prove the global well-posedness of the 2D quasi-geostrophic equation with the critical and supercritical dissipation for the small initial data in the critical Besov space, and local wellposedness for the large initial data. Mathematics Su...

متن کامل

Global Regularity for a Modified Critical Dissipative Quasi-geostrophic Equation

In this paper, we consider the modified quasi-geostrophic equation ∂tθ + (u · ∇) θ + κΛθ = 0 u = Λα−1R⊥θ. with κ > 0, α ∈ (0, 1] and θ0 ∈ L2(R2). We remark that the extra Λα−1 is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence an...

متن کامل

ar X iv : 0 80 3 . 13 18 v 1 [ m at h . A P ] 9 M ar 2 00 8 GLOBAL REGULARITY FOR A MODIFIED CRITICAL DISSIPATIVE QUASI - GEOSTROPHIC EQUATION

In this paper, we consider the modified quasi-geostrophic equation ∂tθ + (u · ∇) θ + κΛ θ = 0 u = ΛRθ. with κ > 0, α ∈ (0, 1] and θ0 ∈ L(R). We remark that the extra Λ is introduced in order to make the scaling invariance of this system similar to the scaling invariance of the critical quasi-geostrophic equations. In this paper, we use Besov space techniques to prove global existence and regula...

متن کامل

Global Well-posedness for the Critical 2d Dissipative Quasi-geostrophic Equation

We give an elementary proof of the global well-posedness for the critical 2D dissipative quasi-geostrophic equation. The argument is based on a non-local maximum principle involving appropriate moduli of continuity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009